0769-8539-0209 / +86-15158220988
UNIQUE SOLUTIONS MOLD LIMITED
UNIQUE SOLUTIONS MOLD LIMITED
Gas-assisted injection molding product defects and solutions

Gas-assisted injection molding product defects and solutions

Common defects and solutions of gas-assisted injection moulding:

1. Gas blows out the melt like in picture 1.

Reason: insufficient pre-filled amount. When the plastic part is a locally thickened plate-shaped part or a plate with stiffeners, most of the thin plate area should be filled in the pre-filling stage to ensure that the shape of the plastic part is closed and the gas does not break through the melt front. According to our experience, the pre-filled amount of the melt should be higher than 70% of the nominal volume of the plastic part, that is the volume ratio of the hollow part is less than 30%; for thick rod-shaped products, the pre-filled amount accounts for about 6.7%. For simultaneous injection, in order to prevent gas from breaking through, it is also necessary to ensure that there is enough melt in front of the gas injection port during gas injection, so try to start gas injection at the end of pre-filling.

图片1.png

2. There is no cavity or cavity is too small. It is possible to reduce the pre-filling degree, increase the melt temperature and gas pressure, shorten the gas prolong time, extend the gas pressure holding and pressure relief time, select materials with higher fluidity, increase the gas channel, and use the side cavity method. In addition, we can check whether the gas needle is malfunctioning or blocked and whether the gas pipeline is leaking.


3. Sink marks. The methods that can be referred to eliminate sink marks are to reduce the pre-filling degree and melt temperature, increase the pressure of the melt, shorten the gas prolong time, increase the gas pressure, extend the gas pressure relief time, reduce the mould temperature, and increase the gate diameter, runner and gate channel, etc. In addition, the pressure curve in gas injection moulding process can be adjusted to check whether the pipeline and the gas needle are working properly and the weight is not stable enough. Reducing the injection speed, increasing the backpressure, improving the mould pressure and venting, changing the gate position and enlarging the gate are all helpful to overcome this defect.


4. The gate channel wall is too thin. This defect can be overcome by reducing the injection speed, lowering the barrel temperature and gas pressure, extending the gas prolong time, and increasing the gate channel.


5. Fingering effect as shown in picture 2. Fingering defect means during the blowing process, the bubbles pass through the thin-walled area outside the predetermined airway of the product to form finger-like branches. Severe gas fingering will reduce the strength of plastic products, cause the failure of gas-assisted moulding technology, or fail to take advantage of the advantages of gas-assisted moulding technology. When this phenomenon occurs, you can consider increasing the filling level, reducing the injection speed, barrel temperature and gas pressure, extending the gas prolong time, shortening the gas and pressure relief time, resetting the pressure curve of the gas injection, and selecting the lower fluidity material, lower mould temperature and reduce wall thickness. In addition, the change of gate position and the increase of air passage also helps to improve this defect. The blowing delay time is the most important process condition that affects the gas finger defect, due to the increase of the prolonged time, the plastic melt near the inner wall surface of the mould cavity can be cooled and solidified, and the thickness of the solid layer increases, so that the lateral filling resistance becomes bigger, and the gas follows the resistance, the minimum principle extends longitudinally along the centre of the airway, so that the length of the airway is deepened and the diameter is reduced, and the degree of air finger defects formed by bubbles passing through the thin-walled area outside the airway of the product is reduced. However, if the blowing prolong time is too long, it is easy to cause issues such as unsmooth blowing. Keeping the injection direction consistent with the blowing direction can effectively alleviate the defects caused by excessive blowing prolong the time when making a design.

图片2.png

6. The gas enters the screw of the injection moulding machine. When this issue happens, we can try to increase the melt holding pressure and holding time, reduce the nozzle temperature and gas pressure, shorten the gas holding time and pressure relief time, reset the pressure curve of gas injection, and choose more fluidity Low material, reduce the gate diameter and change the gate position, etc


7. Burst happens after demolding. When this issue happens, we can reduce the gas pressure, extend the pressure holding time, reset the pressure curve of the gas injection, reduce the gas volume, etc., and check whether the gas needle is blocked.


8. Air bubbles on the part surface. The unruptured bubbles on the surface of the part usually appear near the gate, and the diameter of the bubbles is more than 200um. The main difference between bubbles and bumps is that the edges of the bubbles are smoother and often appear as smooth arcs. The causes of bubbles are more complicated, and the trapped air and material degradation during moulding may cause irregular bubbles on the surface of the part. Appropriately lowering the injection temperature and injection speed can alleviate the occurrence of bubbles. However, the lowering of the injection temperature may cause other defects, such as insufficient material and product blow-through, it is necessary to improve the fluidity of the material and use materials with better thermal stability to solve the issue completely.


Tags: Injection Molding | Mold Factory | Mold Supplier | Injection Molding Factory | Injection Molding Supplier | Injection Mold | Injection Mold Factory | Injection Mold Supplier |
Related News about USM Injection Mold
  • The air trapping position in cavity and exhaust method

    The air trapping position in cavity and exhaust method

    March 3, 2022The air trapping in cavity is usually in the following places:1. Thin-wall structure cavity, the end of melt flow;2. The junction of two or more melts;3. The last area where the melt in the cavity rea...view
  • Temperature system of injection mold

    Temperature system of injection mold

    February 9, 2022Hi everyone,the mold cooling time is the longest during injection, so the design of mold temperature system controlling is very important, we will talk about mold cooling, heating system in following 10 blog.view
  • The basic points of designing gas-assisted injection molding

    The basic points of designing gas-assisted injection molding

    April 18, 20221. Firstly, considering the suitable wall thickness areas needs to be injected and hollowed out, and then decide how to connect them with the gas channel;2. The gas channel should be arranged in balan...view
  • What is Plastic Injection Mold?

    What is Plastic Injection Mold?

    December 28, 2021The plastic mold is used for injection molding, it is assembled with cavity, core and side slider together, with ejection system and adjustments to produce plastic products by different shapes and sizes.view
  • The common fixing method of angle pin

    The common fixing method of angle pin

    May 11, 2024The angle pin is a common part of the drive slider, and the fixing and installation methods as following:1. Pass through the mold plate directly and press the angle pin with the top plate to fix it, a...view
  • The design principle of the exhaust slot

    The design principle of the exhaust slot

    March 7, 2022The exhaust system of plastic molds is also very important, if the product has air trapping or exhaust system is not suitable will have a big impact on injection molding production and product quality...view